Трюки с математикой

На многих людей математика может наводить ужас. Если вы один из них, и у вас не важно с математикой — это не ваша вина. Нас просто не научили в школе математическим трюкам, с которыми любые расчеты становятся элементарными.

Предлагаемый список, возможно, улучшит общие знания о математических приемах и ускорит выполнение математических вычислений в уме.

1. Умножение на 11

Все мы знаем, что при умножении на 10 к числу добавляется 0, а знаете ли вы, что существует такой же простой способ умножения двузначного числа на 11? Вот он:
Возьмите исходное число и представьте промежуток между двумя знаками (в этом примере мы используем число 52):
5_2
Теперь сложите два числа и запишите их посередине:
5_(5+2)_2
Таким образом, ваш ответ: 572.
Если при сложении чисел в скобках получается двузначное число, просто запомните вторую цифру, а единицу прибавьте к первому числу:
9_(9+9)_9
(9+1)_8_9
10_8_9
1089 – это срабатывает всегда.

2. Быстрое возведение в квадрат

Этот прием поможет быстро возвести в квадрат двузначное число, которое заканчивается на 5. Умножьте первую цифру саму на себя +1, а в конце допишите 25. Вот и все!
252 = (2×(2+1)) & 25
2 × 3 = 6
625

3. Умножение на 5

Большинство людей очень просто запоминает таблицу умножения на 5, но, когда приходится иметь дело с большими числами, сделать это становится сложнее. Или нет? Этот прием невероятно прост.
Возьмите любое число, разделите на 2 (другими словами, поделите пополам). Если в результате получилось целое число, припишите 0 в конце. Если нет, не обращайте внимание на запятую и в конце добавьте 5. Это срабатывает всегда:
2682 × 5 = (2682 / 2) & 5 или 0
2682 / 2 = 1341 (целое число, поэтому добавьте 0)
13410
Давайте попробуем другой пример:
5887 × 5
2943,5 (дробное число, пропустите запятую, добавьте 5)
29435

4. Умножение на 9

Это просто. Чтобы умножить любое число от 1 до 9 на 9, посмотрите на руки. Загните палец, который соответствует умножаемому числу (например 9х3 – загните третий палец), посчитайте пальцы до загнутого пальца (в случае 9х3 – это 2), затем посчитайте после загнутого пальца (в нашем случае – 7). Ответ – 27.

5. Умножение на 4

Это очень простой прием, хотя очевиден лишь для некоторых. Хитрость в том, что нужно просто умножить на 2, а затем опять умножить на 2:
58 × 4 = (58 × 2) + (58 × 2) = (116) + (116) = 232

6. Подсчет чаевых

Если вам нужно оставить 15% чаевых, есть простой способ сделать это. Высчитайте 10% (разделите число на 10), а потом добавьте получившееся число к его половине и получите ответ:
15% от $25 = (10% от 25) + ((10% от 25) / 2)
$2.50 + $1.25 = $3.75

7. Сложное умножение

Если вам нужно умножать большие числа, причем одно из них — четное, вы можете просто перегруппировать их, чтобы получить ответ:
32 × 125 все равно, что:
16 × 250 все равно, что:
8 × 500 все равно, что:
4 × 1000 = 4,000

8. Деление на 5

На самом деле делить большие числа на 5 очень просто. Все, что нужно, – просто умножить на 2 и перенести запятую: 195 / 5
Шаг1: 195 * 2 = 390
Шаг2: Переносим запятую: 39,0 или просто 39.
2978 / 5
Шаг1: 2978 * 2 = 5956
Шаг2: 595,6

9. Вычитание из 1000

Чтобы выполнить вычитание из 1000, можете пользоваться этим простым правилом: Отнимите от 9 все цифры, кроме последней. А последнюю цифру отнимите от 10: 1000
-648
Шаг1: от 9 отнимите 6 = 3
Шаг2: от 9 отнимите 4 = 5
Шаг3: от 10 отнимите 8 = 2
Ответ: 352

10. Систематизированные правила умножения

Умножение на 5: Умножьте на 10 и разделите на 2.
Умножение на 6: Иногда проще умножить на 3, а потом на 2.
Умножение на 9: Умножьте на 10 и отнимите исходное число.
Умножение на 12: Умножьте на 10 и дважды прибавьте исходное число.
Умножение на 13: Умножьте на 3 и 10 раз прибавьте исходное число.
Умножение на 14: Умножьте на 7, а затем — на 2.
Умножение на 15: Умножьте на 10 и 5 раз прибавьте исходное число, как в предыдущем примере.
Умножение на 16: Если хотите, 4 раза умножьте на 2. Или умножить на 8, а потом на 2.
Умножение на 17: Умножьте на 7 и 10 раз прибавьте исходное число.
Умножение на 18: Умножьте на 20 и дважды отнимите исходное число.
Умножение на 19: Умножьте на 20 и отнимите исходное число.
Умножение на 24: Умножьте на 8, а потом на 3.
Умножение на 27: Умножьте на 30 и 3 раза отнимите исходное число.
Умножение на 45: Умножьте на 50 и 5 раз отнимите исходное число.
Умножение на 90: Умножьте на 9 и припишите 0.
Умножение на 98: Умножьте на 100 и дважды отнимите исходное число.
Умножение на 99: Умножьте на 100 и отнимите исходное число.

Бонус: Проценты

Вычислить 7% от 300. Кажется сложным?

Проценты: Сперва нужно понять значение слова «Процент» (Percent). Первая часть слова — ПРО (PER) , как 10 пунктов на страницу сайта listverse. PER = ДЛЯКАЖДОГО. Вторая часть — ЦЕНТ (CENT), как 100.

Например, СТОлетие = 100 лет. 100 ЦЕНТов в 1 долларе и так далее. Итак, ПРОЦЕНТ = ДЛЯКАЖДОЙСОТНИ.

Итак, получается, что 7% от 100 будет 7. (7 для каждой сотни, только одной сотни).
8% от 100 = 8.
35,73% от 100 = 35,73

Но как это может быть полезным?

Вернемся к задачке 7% от 300. 7% от
первой сотни равно 7. 7%, от второй сотни — то же 7, и 7% от третьей сотни – все те же 7. Итак, 7 + 7 + 7 = 21. Если 8% от 100 = 8, то 8% от 50 = 4 (половина от 8).

Дробите каждое число, если нужно вычислить проценты из 100, если же число меньше 100, просто перенесите запятую влево.

ПРИМЕРЫ:
8%200 = ? 8 + 8 = 16.
8%250 = ? 8 + 8 + 4 = 20,
8%25 = 2,0 (Передвигаем запятую влево).
15%300 = 15+15+15 =45,
15%350 = 15+15+15+7,5 = 52,5

Также полезно знать, что вы всегда можете поменять числа местами: 3% от 100 — то же самое, что 100% от 3. 35% от 8 — то же самое, что и 8% от 35.

Главная /Полезная информация/

Базовый навык для начала занятий ребенка ментальной арифметикой — умение считать от 1 до 10. Школьная математика от ментальной арифметики в этом плане серьезно отличается, она предполагает системное изучение и освоение всех действий, совершаемых с цифрами, постепенных переход от простого к сложному. Это серьезная и трудная для малыша работа, и если на первых порах имеется непонимание математики, то это может перерасти в серьезные проблемы с учебой в будущем. В то же время, с помощью ментальной арифметики можно помочь ребенку освоить некоторые аспекты и восполнить пробелы в знаниях.

Ментальная арифметика не замена математики, а лишь ее дополнение, которое может помочь ребенку справиться с основной дисциплиной.

Заниматься ментальной арифметикой можно с 4-х лет. Ментальная арифметика позволяет ребенку воспринимать дисциплину комплексно и не зацикливаться на мелочах. Во многом сама математика — процесс творческий, и относиться к ней нужно соответственно. Запомнив алгоритм, можно проводить самые разные операции и вычисления.
Ребенок, обладающий навыком счета в уме по системе менар, свободнее чувствует себя на поле вычислений: охотнее предлагает нестандартные подходы к решению стандартных задач, всегда с интересом относится к новым темам. Все потому, что базовый навык устного счета он уже освоил на наивысшем уровне, и теперь полностью готов к изучению нового.

Устный счет представляет собой базис математики, без которого невозможна не просто дальнейшая учеба в школе, а элементарная логика для принятия решений на основе вычислений.

Ментальная арифметика позволяет тренировать логическое мышление у ребенка и обучает его концентрации.

Ребенок до определенного возраста неспособен концентрироваться на одном предмете на долгое время — это особенность детской психики. Ментальная арифметика помогает ему тренировать этот навык, учит, как сосредотачивать внимание.

Заниматься ментальной арифметикой нужно начинать как можно раньше. Тогда и ребенку будет легче осваивать этот навык, и дело у него дальше пойдет быстрее. Менар позволит ребенку быстро складывать, умножать, делить и отнимать числа в уме без каких-либо затруднений, а, освоив настолько элементарные операции, ребенку будет гораздо легче в дальнейшей учебе. При регулярных занятиях ментальной арифметикой ребенок может добиться выдающихся успехов в учебе и в дальнейшем.

Менар также сильно развивает абстрактное мышление. Сама по себе математика — наука одновременно конкретная и абстрактная, точная и с большим процентом свободы, и позволяет использовать для изучения буквально любые средства. При технике менар ребенок использует специальные счеты. Позже, при вычислениях, он использует в уме образ этих счетов для производства вычислений. В первых классах это помогает в математике, а в дальнейшей учебой станет бесценным помощником при изучении геометрии, физики, химии и черчения, где без пространственного мышления не обойтись. Развив пространственное и логическое мышление, ребенок без труда будет справляться со стандартной и даже усиленной школьной программой просто за счет того, что у него имеется хорошая база.

Урок 7. Возведение в квадрат в уме

Умение считать в уме квадраты чисел может пригодиться в разных жизненных ситуациях, например, для быстрой оценки инвестиционных сделок, для подсчета площадей и объемов, а также во многих других случаях. Кроме того, умение считать квадраты в уме может служить демонстрацией ваших интеллектуальных способностей. В данной статье разобраны методики и алгоритмы, позволяющие научиться этому навыку.

Квадрат суммы и квадрат разности

Одним из самых простых способов возведения двузначных чисел в квадрат является методика, основанная на использовании формул квадрата суммы и квадрата разности:

Для использования этого метода необходимо разложить двузначное число на сумму числа кратного 10 и числа меньше 10. Например:

  • 372 = (30+7)2 = 302 + 2*30*7 + 72 = 900+420+49 = 1 369
  • 942 = (90+4)2 = 902 + 2*90*4 + 42 = 8100+720+16 = 8 836

Практически все методики возведения в квадрат (которые описаны ниже) основываются на формулах квадрата суммы и квадрата разности.

Эти формулы позволили выделить ряд алгоритмов упрощающих возведение в квадрат в некоторых частных случаях.

Квадрат близкий к известному квадрату

Если число, возводимое в квадрат, находится близко к числу, квадрат которого мы знаем, можно использовать одну из четырех методик для упрощенного счета в уме:

На 1 больше:

Методика: к квадрату числа на единицу меньше прибавляем само число и число на единицу меньше.

  • 312 = 302 + 31 + 30 = 961
  • 162 = 152 + 15 + 16 = 225 + 31 = 256

На 1 меньше:

Методика: из квадрата числа на единицу больше вычитаем само число и число на единицу больше.

  • 192 = 202 – 19 – 20 = 400 – 39 = 361
  • 242 = 252 – 24 – 25 = 625 – 25 – 24 = 576

На 2 больше

Методика: к квадрату числа на 2 меньше прибавляем удвоенную сумму самого числа и числа на 2 меньше.

  • 222 = 202 + 2*(20+22) = 400 + 84 = 484
  • 272 = 252 + 2*(25+27) = 625 + 104 = 729

На 2 меньше

Методика: из квадрата числа на 2 больше вычитаем удвоенную сумму самого числа и числа на 2 больше.

  • 482 = 502 – 2*(50+48) = 2500 – 196 = 2 304
  • 982 = 1002 – 2*(100+98) = 10 000 – 396 = 9 604

Все эти методики можно легко доказать, выведя алгоритмы из формул квадрата суммы и квадрата разности (о которых сказано выше).

Квадрат чисел, заканчивающихся на 5

Чтобы возвести в квадрат числа, заканчивающиеся на 5. Алгоритм прост. Число до последней пятерки, умножаем на это же число плюс единица. К оставшемуся числу приписываем 25.

  • 152 = (1*(1+1)) 25 = 225
  • 252 = (2*(2+1)) 25 = 625
  • 852 = (8*(8+1)) 25 = 7 225

Это верно и для более сложных примеров:

  • 1552 = (15*(15+1)) 25 = (15*16)25 = 24 025

Квадрат чисел близких к 50

Считать квадрат чисел, которые находятся в диапазоне от 40 до 60, можно очень простым способом. Алгоритм таков: к 25 прибавляем (или вычитаем) столько, насколько число больше (или меньше) 50. Умножаем эту сумму (или разность) на 100. К этому произведению добавляем квадрат разности числа, возводимого в квадрат, и пятидесяти. Посмотрите работу алгоритма на примерах:

  • 442 = (25-6)*100 + 62 = 1900 + 36 = 1936
  • 532 = (25+3)*100 + 32 = 2800 + 9 = 2809

Квадрат трехзначных чисел

Возведение в квадрат трехзначных чисел может быть осуществлено при помощи одной из формул сокращенного умножения:

Нельзя сказать, что этот способ является удобным для устного счета, но в особо сложных случаях его можно взять на вооружение:

4362 = (400+30+6)2= 4002 + 302 + 62 + 2*400*30 + 2*400*6 + 2*30*6 = 160 000 + 900 + 36 + 24 000 + 4 800 + 360 = 190 096

Тренировка

Если вы хотите прокачать свои умения по теме данного урока, можете использовать следующую игру. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что числа каждый раз разные.

Перед тем как начать игру, рекомендуем зарегистрироваться, чтобы результат был сохранен в вашей истории, и вы смогли бы видеть собственный прогресс.

Cтатистика На весь экран

6 Умножение до 100 Экзамен по практике →

1PRO

КВАДРАТ ЧЕТЫРЕХЗНАЧНЫХ ЧИСЕЛ

В качестве подготовительного навыка для развития умения возводить в квадрат четырехзначные числа вам необходимо освоить решение задач на умножение типа «4 на 1». Такую задачу мы разбиваем на две подзадачи типа «2 на 1», как показано ниже.


Овладение навыками умножения «4 на 1» будет означать, что вы готовы возводить в квадрат четырехзначные числа. Попробуем на примере числа 4267.

Используя такой же метод, как и при возведении в квадрат двух- и трехзначных чисел, проделаем это с числом 4267, округлив его в меньшую сторону на 267 до 4000 и в большую — на 267 до 4534. Умножим 4534 х 4000 (задача «4 на 1») и затем прибавим квадрат числа, на которое вы изменили исходное (2672), как показано ниже.

Сейчас уже очевидно, сколько действий происходит внутри этого примера. Я осознаю, что одно дело сказать: «Прибавьте квадрат 267», и совсем другое — сделать это и запомнить число, которое следует приплюсовать. Поэтому, как только умножите 4534 х 4 и получите 18 136, можете произнести первую часть ответа вслух: «Восемнадцать миллионов…». Вы можете так сказать, потому что исходное число всегда округляется до ближайшей тысячи. Поэтому наибольшее трехзначное число, которое придется возводить в квадрат на следующем шаге, будет 500. Квадрат 500 равен 250 000. А поскольку остаток вашего ответа (в данном случае 136 000) меньше 750 000, это означает, что число миллионов не изменится.

После того как вы произнесете слова «восемнадцать миллионов…», вам нужно закрепить в памяти число 136 000, прежде чем возводить в квадрат 267. Вот где мнемонические приемы из предыдущей главы придут на помощь! Благодаря фонетическому коду число 136 можно преобразовать в слово damage (1 = d, 3 = m, 6 = j)[14]. Теперь смело приступайте к следующей части задачи, просто запомнив damage (и существование еще трех нулей в конце числа). Если в какой-то момент посреди вычислений вы забудете изначальную задачу, можете либо бросить взгляд на исходные числа, либо, если они не записаны, попросить аудиторию повторить задание (чтобы создать иллюзию, будто вы заново приступаете к решению, в то время как вы уже сделали некоторые расчеты)!

В результате возведения в квадрат трехзначного числа (изученным ранее способом) вы получите 71 289. Мне раньше было сложно запоминать сотни в ответе (в данном случае 2).

Я справился с этим, прибегнув к помощи пальцев (здесь — двух пальцев). Если вы забыли две последние цифры (89), то можете вернуться к исходному числу (4267), возвести последние две цифры в квадрат (672 = 4489) и взять последние две цифры полученного числа.

Для вычисления итогового ответа нужно прибавить 71 289 к damage (то есть к числу 136 000) и их сумму 207 289 уже можно проговорить вслух.

* * *

Томас Фуллер:ученые мужи и большие дураки

Трудно отнять первое место по количеству проблем в обучении у Хелен Келлер[15], но темнокожий раб Томас Фуллер, родившийся в Африке в 1710 году, буквально наступает ей на пятки. Он не только был неграмотным, но ни одного дня в своей жизни не учился. Будучи «собственностью» Элизабет Кокс, Томас Фуллер работал на полях Вирджинии. Он сам освоил счет до 100, после чего развил свои «вычислительные способности» путем подсчета предметов, которые всегда под рукой, например зерен в бушелях пшеницы, семян льна и количества волос в коровьем хвосте (2 872 волоска).

Отталкиваясь от простого счета, Фуллер научился вычислять, сколько черепицы потребуется для покрытия крыши дома; сколько столбов понадобится для его ограждения и тому подобные вещи.

Его поразительные навыки развивались, а с ними вместе росла его репутация. Уже в преклонном возрасте он принял вызов двух пенсильванцев, согласившись продемонстрировать свои способности в вычислении чисел в уме, причем таких, какие вызвали бы трудности у лучших молниеносных вычислителей. Например, они спросили: «Предположим, фермер имеет шесть свиноматок, каждая из них родит шесть самок в первый год, и все они будут размножаться в той же прогрессии в течение восьми лет; сколько свиноматок в конечном итоге будет иметь фермер?» Задача может быть записана как 7

8 х 6, то есть 7 х 7 х 7 х 7 х 7 х 7 х 7 х 7 х 6. Буквально через десять минут Фуллер выдал ответ: 34 588 806.

После его смерти в 1790 году газета Columbian Centinel сообщила, что «Фуллер мог вычислить число ярдов, футов, дюймов и трети дюймов[16] для любого заданного расстояния, назвать диаметр земной орбиты, а по результатам каждого расчета давал правильный ответ за меньшее время, чем девяносто девять человек из ста сделали бы это на бумаге». Когда Фуллера спросили, жалеет ли он о том, что так и не получил традиционного образования, он ответил: «Нет. Лучшее, что у меня есть, это отсутствие образования: среди многих ученых мужей найдутся большие дураки».

* * *

Возведем в квадрат еще одно четырехзначное число: 84312.

Я не буду повторно описывать все действия, как в последней задаче, обращу ваше внимание лишь на некоторые моменты. После выполнения действия 8 х 8862 = 70 896 становится ясно, что 896 больше 750, поэтому возможен перенос единицы в старший разряд. Действительно, так как 4312 больше 4002 = 160 000, то определенно нужен перенос единицы во время прибавления числа 4312 к 896 000. Следовательно, на этом этапе можно без опаски произнести вслух: «Семьдесят один миллион…»

При возведении в квадрат 431 получаем 185 761. Складываем 185 и 896, выходит 1081, и произносим остаток ответа.

Но помните, что мы уже предвосхитили перенос единицы, поэтому просто скажите: «…81 тысяча…761». Работа выполнена!

На еще один тонкий момент в вычислениях мы укажем в примере 27532.

Так как мы округлили исходное число 2753 до 3000, то будем умножать 3000 на другое число из области «2000 плюс».

Можно, конечно, вычесть 2753 — 247 = 2506, но это сложнее.

Чтобы получить последние три цифры этой разности, удвойте 753 — выйдет 1506. Последние три цифры данного результата (506) — это последние три цифры числа «2000 плюс»: 2506! Это прием срабатывает, поскольку сумма двух перемножаемых чисел всегда равна удвоенному исходному числу.

Затем работаем в обычном режиме, перемножив 3000 х 2506 = 7 518 000; преобразуем 518 в слова[17]light off и произносим вслух первую часть ответа: «Семь миллионов…». Здесь это можно утверждать, так как 518 меньше 750, поэтому переноса единицы не будет.

Далее прибавляем квадрат числа 247. Не забудьте, что 247 можно быстро получить как дополнение для 753. Затем переходим к окончательному ответу, как это сделано в предыдущем примере.

УПРАЖНЕНИЕ: КВАДРАТЫ ЧЕТЫРЕХЗНАЧНЫХ ЧИСЕЛ

1. 123422. 86392 3. 53122

4. 98632 5. 36182 6. 29712

Урок 3.

Традиционное умножение в уме

Давайте рассмотрим, как можно умножать двузначные числа, используя традиционные методы, которым нас обучают в школе. Некоторые из этих методов, могут позволить вам быстро перемножать в уме двузначные числа при достаточной тренировке. Знать эти методы полезно. Однако важно понимать, что это лишь вершина айсберга. В данном уроке рассмотрены наиболее популярные приемы умножения двузначных чисел.

Первый способ – раскладка на десятки и единицы

Самым простым для понимания способом умножения двузначных чисел является тот, которому нас научили в школе. Он заключается в разбиении обоих множителей на десятки и единицы с последующим перемножением получившихся четырех чисел. Этот метод достаточно прост, но требует умения удерживать в памяти одновременно до трех чисел и при этом параллельно производить арифметические действия.

Например: 63*85 = (60+3)*(80+5) = 60*80 + 60*5 +3*80 + 3*5=4800+300+240+15=5355

Проще такие примеры решаются в 3 действия. Сначала умножаются десятки друг на друга. Потом складываются 2 произведения единиц на десятки. Затем прибавляется произведение единиц. Схематично это можно описать так:

  • Первое действие: 60*80 = 4800 — запоминаем
  • Второе действие: 60*5+3*80 = 540 – запоминаем
  • Третье действие: (4800+540)+3*5= 5355 – ответ

Для максимально быстрого эффекта потребуется хорошее знание таблицы умножения чисел до 10, умение складывать числа (до трехзначных), а также способность быстро переключать внимание с одного действия на другое, держа предыдущий результат в уме. Последний навык удобно тренировать путем визуализации совершаемых арифметических операций, когда вы должны представлять себе картинку вашего решения, а также промежуточные результаты.

Вывод. Не трудно убедиться в том, что этот способ не является самым эффективным, то есть позволяющим при наименьших действиях получить правильный результат. Следует принять во внимание другие способы.

Второй способ – арифметические подгонки

Приведение примера к удобному виду является достаточно распространенным способом счета в уме. Подгонять пример удобно, когда вам нужно быстро найти примерный или точный ответ. Желание подгонять примеры под определенные математические закономерности часто воспитывается на математических кафедрах в университетах или в школах в классах с математическим уклоном. Людей учат находить простые и удобные алгоритмы решения различных задач. Вот некоторые примеры подгонки:

Пример 49*49 может решаться так: (49*100)/2-49. Сначала считается 49 на сто – 4900. Затем 4900 делится на 2, что равняется 2450, затем вычитается 49. Итого 2401.

Произведение 56*92 решается так: 56*100-56*2*2*2. Получается: 56*2= 112*2=224*2=448. Из 5600 вычитаем 448, получаем 5152.

Этот способ может оказаться эффективнее предыдущего только в случае, если вы владеете устным счетом на базе перемножения двузначных чисел на однозначные и можете держать в уме одновременно несколько результатов. К тому же приходится тратить время на поиск алгоритма решения, а также уходит много внимания за правильным соблюдением этого алгоритма.

Вывод. Способ, когда вы стараетесь умножить 2 числа, раскладывая их на более простые арифметические процедуры, отлично тренирует ваши мозги, но связан с большими мысленными затратами, а риск получить неправильный результат выше, чем при первом методе.

Третий способ — мысленная визуализация умножения в столбик

56*67 – посчитаем в столбик.

Наверное, счет столбиком содержит максимальное количество действий и требует постоянно держать в уме вспомогательные числа. Но его можно упростить. Во втором уроке рассказывалось, что важно уметь быстро умножать однозначные числа на двузначные. Если вы уже умеете это делать на автомате, то счет в столбик в уме для вас будет не таким уж и трудным. Алгоритм таков

Первое действие: 56*7 = 350+42=392 – запомните и не забывайте до третьего действия.

Второе действие: 56*6=300+36=336 (ну или 392-56)

Третье действие: 336*10+392=3360+392=3 752 – тут посложнее, но вы можете начинать называть первое число, в котором уверены – «три тысячи…», а пока говорите, складывайте 360 и 392.

Вывод: счет в столбик напрямую сложен, но вы можете, при наличии навыка быстрого умножения двузначных чисел на однозначные, его упросить. Добавьте в свой арсенал и этот метод. В упрощенном виде счет в столбик является некоторой модификацией первого метода. Что лучше – вопрос на любителя.

Как можно заметить, ни один из описанных выше способов не позволяет считать в уме достаточно быстро и точно все примеры умножения двузначных чисел. Нужно понимать, что использование традиционных способов умножения для счета в уме не всегда является рациональным, то есть позволяющим при наименьших усилиях достигать максимального результата.

2 Простая арифметика4 Частные методики →

1PRO

Оставьте комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *